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A B S T R A C T  

In this paper  we consider a continuous map f :  X --* X,  where X is a 

compact metric space. The existence of chaotic sets of f is discussed. For 

the special case X ---- [0,1], we prove that  f has a positive topological 

entropy iff it has an uncountable chaotic set in which each point is almost 

periodic, and iff it has an uncountable chaotic set in which each point is 

chain recurrent.  As an application, a uniform proof for some known results 

will be given. 

1. I n t r o d u c t i o n  

Throughout this paper, X will denote a compact metric space with metric d; 

I is the closed interval [0, 1]. 

For a continuous map f :  X ~ X, we denote the sets of periodic points, almost 

periodic points, recurrent points, nonwandering points and chain recurrent points 

of f by P(f), A(f), R(f), gt(f) and CR(f) ,  respectively, and the topological 

entropy of f by ent(f) ,  whose definitions are as usual (cf. [1] where, however, 

"almost periodic" is called "strongly recurrent" ). fn  will denote the n-fold iterate 

of f .  

D c X is said to be in a chaot ic  set  of f ,  if for any different points x, y E D, 

lim infd(fn(x),fn(y)) = 0 and lim supd(fn(x),fn(y))  > O. 
n---~oo n---+o0 

f is said to be chaotic ,  if it has a chaotic set which is uncountable. 
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For a continuous map f :  I ~ I, Li and Yorke [10] proved that if f has a 

periodic point of period 3, then it is chaotic. 

Later, many sharpened results came into being in succession (see [1], [6], [7], 

[8], [9], [11], [13], [15], [16]). One can find in [1], [6] and [12] equivalent conditions 

for f to be chaotic and in [14] or [18] a chaotic map with topological entropy zero, 

which showed that positive topological entropy and chaos are not equivalent. On 

the other hand, it is known that by restricting the uncountable chaotic set to 

R ( f ) ,  or to P ( f ) ,  or to f~(f), then equivalence holds (see [3], [19], [20]). 

This left us a question: Is the existence of an uncountable chaotic set of f in 

A ( f )  or in CR(f )  equivalent to ent ( f )  > 0? 

In the present paper, we first derive in Theorem A a sufficient condition for a 

map to have an uncountable chaotic set in which each point is almost periodic. 

We then use Theorems B and C to give a positive answer to the question. 

The main results are stated as follows. 

THEOREM A: Let f:  X --* X be continuous. I f  f has an almost shift invariant 

set, then it has an uncountable chaotic set in which each point is almost periodic. 

THEOREM B: Let f: I --. I be continuous. I f  ent ( f )  > O, then there exists an 

uncountable chaotic set of f in which each point is almost periodic. 

THEOREM C: Let f: I --* I be continuous. I f  ent ( f )  = O, then any set containing 

at least two chain recurrent points of f is not chaotic 

We give the proofs of Theorems A and B in Section 2, and the proof of Theorem 

C in Section 3. 

Theorems B and C not only give a positive answer to the above problem, but 

also unify the proofs of some known results. In fact, since 

A ( f )  C R ( f )  C P ( f )  C f~(f) C CR(f )  

(cf. [1]), we have at once 

COROLLARY D: Let f: I --* I be continuous. Then the following are equivalent: 

(1) en t ( / )  > 0. 

(2) A ( f )  contains an uncountable chaotic set o f f .  

(3) R ( f )  contains an uncountable chaotic set of f . 

(4) P ( f )  contains an uncountable chaotic set o f f .  

(5) ~ ( f )  contains an uncountable chaotic set o f f .  
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(6) CR(f )  contains an uncountable chaotic set of  f .  

Remark: In Corollary D, (1)~(5)  was proved by Zhou 

(1 )o(3)  were given by Yang [19] and Du [3], respectively. 

and (6 )o (1 )  are new. 

[20]. (1)==>(4) and 

However, (1 )o (2 )  

2. P r o o f s  o f  T h e o r e m s  A a n d  B 

In this section f will denote a continuous map of X into itself, ~k the one-sided 

symbol space with k symbols and a the shift on Ek. For any x E X ,  w(x, f )  

denotes the set of w-limit points of x under f .  

M C X is said to be m i n i m a l  u n d e r  f ,  if it is a non-void, closed and invariant 

subset of f and has no proper subset which is non-void, closed and invariant under 

f. 

Definition 2.1: A compact set A C X is said to be a l m o s t  shi f t  i nva r i an t  if: 

(1) f ( A )  C A. 

(2) There exists for some k _> 2 a continuous surjection h: A ~ Ek satisfying: 

(a) The set (y ~ Ek ; h - l ( y )  contains at least two points) is countable. 

(b) hof[A = ~ o h .  

LEMMA 2.1: For any x E X the following are equivalent: 

(1) x e A ( f ) .  

(2) x e A ( f  n) for any n > O. 

(3) x E w(x, f )  and w(x, f )  is a minimal set o f f .  

For a proof see [4] and [5]. 

LEMMA 2.2: (Lemma 3 of [2]). CR(f)  = C R ( f ' )  for any n > O. 

LEMMA 2.3: For any k > 2 the shift a on Ek has a minimal set containing an 

uncountable chaotic subset. 

The proof will be given in the Appendix. 

LEMMA 2.4: Let f:  X --~ X ,  g: Y --~ Y be continuous, where X ,  Y are compact 

metric spaces. I f  there exists a continuous surjection h: X ~ Y such that g o h = 

h o f ,  then h ( A ( f ) )  = A(g). 

Proof: By the definition of almost periodic points, we have obviously 

h (A( f ) )  C A(g). 
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To prove the lemma, it suffices to show h (A( f ) )  D A(g). For any y 6 A(g), 

h - l (w(y ,  g)) is an invariant subset, so it contains a minimal set M of f .  Clearly, 

h(M)  C w(y, g) is invariant under g. By minimality of w(y, g), h (M)  = w(y, g). 

Thus there exists an almost periodic point x E M such that  h(x) = y, which 

proves 

h(A( f ) )  D A(g). 

Proof  of Theorem A: By the hypothesis in the theorem, f has an almost shift 

invariant set A, thus there is a continuous surjection h : A --* Ek for some k > 2 

such that  for any x E A, 

h o f ( x )  = a o h(x). 

By Lemma 2.3, there is a minimal set M '  C Ek such that  M '  contains an un- 

countable chaotic set D '  of a.  Again by Lemma 2.1, each point of M '  is almost 

periodic. Denote, for simplicity, g = f ih.  By Lemma 2.4, for each y E D '  we can 

take an x 6 A(g) such that  h(x) = y. All of these points form an uncountable 

set of A, which we will denote by D. To complete the proof of the theorem, it 

suffices to show that  D is a chaotic set of f .  

For any Xl,X2 E D, there exist Yl,Y2 6 D' such that  h(x~) = Yi for i = 1,2. 

First, we see easily that  

lim supd(an(y l ) ,en(y2))  > 0 

implies 

lim supd(gn(xl ) ,gn(x2))  > O. 

Secondly, since A is an almost shift invariant set of g and D '  uncountable, it 

follows that  there exists Yo 6 D '  such that  h-l (yo)  contains only one point Xo. 

By the chaoticity of D '  and minimality of M' ,  there exists nl ~ c~ such that  

lim an'(yl)  = lim an'(y2) = Yo, 
i---*c~ i---*~ 

which implies 

Thus, 

lim gn'(Xl) -- lim g'~'(x2) = xo. 
i--*oo i--*~ 

lim infd(g~(xl) ,  gn(x2)) = 0. 
n- - -*OO 

Since g = fiA, we see that  D is a chaotic set of f .  
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Proof of Theorem B: Since en t ( f )  > 0, by [1] for some N > 0, f N  has an 

almost  shift invariant set (cf. the proof  of Prop.  15 of Chap. I I  in [1]). I t  follows 

from Theorem A tha t  f g  has an uncountable chaotic set, say D,  in which each 

point is almost  periodic under f g .  Obviously, D is also a chaotic set of f .  And  

by L e m m a  2.1, D C A( f ) .  Hence the result follows. 

3. P r o o f  o f  T h e o r e m  C 

LEMMA 3.1: Let f :  X --* X be continuous and let x, y E X .  Then 

lim in fd ( f~(x ) ,  f ~ ( y ) ) =  0 
~ - - *  o o  

if[ for any N > O, 

lirno inf d(( fN)~(x) ,  ( fN)~(y) )  = O. 

Proos The sufficiency is obvious. We proved the necessity. Since 

lim inf d ( f " (x ) ,  f " ( y ) )  = 0 

and X is compact ,  there exist xo C X and some sequence of positive integers 

ni --~ c~ such tha t  

lim f m  (x) = lim fn ,  (y) = Xo. 

Let ni = p i N + r i ,  where 0 < ri < N.  For some r w i t h 0  < r < N,  there 

exist infinitely many  i's, say ix < i2 < . . .  such tha t  ril = ri2 . . . . .  r.  Set 

g = N - r > 0 .  We have 

= ( f , ) p , k + l ( x )  __+ f (xo), 
fn,~ +e(y) = (fN)p,k +l(y) --+ fe(xo)" 

This shows 

l i m  inf d ( ( fN)n(x ) ,  ( fU)n(y) )  = O. 

In the following s tatements ,  f will denote a continuous self-map of I = [0, 1] 

with entropy zero. For any x, y E I ,  Ix, y[ will denote the closed interval with 

endpoints  x and y, when it is not  known whether  x < y or y < x. 

LEMMA 3.2: I f x  6 C R ( f )  - P ( f ) ,  then for each n > 0 there exists a fixed point 

o f f  ~ between x and f~(x) .  

For a proof  see [12]. 
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LEMMA 3.3: I f  x E C R ( f )  - P ( f ) ,  then there are no fixed points in [a, b], where 

a = inf{f2k(x); k = O, 1, 2 . . . .  }, 

b = sup{f2k(x) ;  k = 0, 1, 2 . . . .  }. 

For a proof  see [1], p. 151. 

LEMMA 3.4: Suppose x, y E C R ( f )  with x < y. I f  [x, y] N P ( f )  # 0, then 

t im inf I f " (x)  - fn(y) l  > O. 

To show the result,  it is sufficient f rom L e m m a  3.1 to prove t ha t  for some Prooi~ 

N > O ,  

(*) lira inf I ( fN)n(x)  - ( f N ) , ~ ( y ) [  > O. 
n- . - -*  o o  

For this we divide the p roof  into three cases. 

CASE 1: x , y  E P ( f ) .  In  this case, there exists an N > 0 such tha t  f g ( x )  = x 

and f g ( y )  = y. So 

l i m i n f l ( f N ) n ( x ) -  (fN)n(y)] = IX-- Y[ > O. 

CASE 2: For x and y, one is periodic and the other  not.  Wi thou t  loss of  

general i ty  we assume x E P ( f )  and y r P ( f ) .  There  exists k > 0 such t ha t  

x is a fixed point  of fk .  Since C R ( f )  =-ca( f  k) and P(] )  = p ( f k ) ,  we have 

y e C R ( f  k) - p ( f k ) .  Noting tha t  e n t ( f )  > 0 iff e n t ( f  k) > 0 (cf. [1] or [17]), it 

follows f rom L e m m a  3.3 t ha t  x ~ [a, b], where 

a = inf{(fk)2n(y) ;  n = 0, 1 , 2 , . . . } ,  

b = sup{(fk)2'~(y);  n = 0, 1, 2 , . . . } .  

And  hence inf{[x - z[; z E [a, b]} > 0. Thus  we have for N = 2k 

limo~ inf  ]( fg)n (X) -- ( fN)n  (y)[ = limo~ inf ](f2k)n (X) -- ( f2k)n (y)] 

= l im inf [x -- (fk)2,~(y)[ 
n - - - ~ O O  

_> inf{lx - z[; z e [a, b]} > 0. 



Vol. 93, 1996 ALMOST PERIODICITY 151 

CASE 3: X ~ P ( f )  and y ~ P ( f ) .  Since Ix, y] N P ( f )  # 0, there exists p e (x, y) 

such that  p c P ( f ) .  Suppose the period of p is k. Then p is a fixed point of fk.  

As stated in Case 2, y E C R ( f  k) - p ( f k )  and en t ( f  k) = 0. Thus by Lemma 3.3 

for 

a = sup{(fk)2n(x);  n = 0 ,1 ,2 , . . . }  and ~ = inf{(fk)2n(y); n = 0 ,1 ,2 , . . . }  

we have a < p < ~. One can check easily that  ( , )  holds for N = 2k. 

The proof is complete. 

LEMMA 3.5: Let x , y  C CR(f ) .  I[ ] f n ( x ) , f n ( y ) [ N P ( f  ) = 0 [or each 

n = O, 1, 2 , . . . ,  then lim~__.~ ]fn(x) - fn(y) l  = 0. 

Proo~ For each n > 0, denote In =]fn(x) ,  fn(y)[.  We claim that  Im M In = 0 

whenever m < n. 

To prove the claim, we restrict attention to the case 

fro(x) < fn (x ) .  

By Lemma 3.2, there is a fixed point e of fn--m such that  

fro(X) < e < f " - m ( f m ( x ) )  = f " ( x ) .  

Since e ~t I{ for i = m, n, it follows that  Im C [0, e) and I,~ C (e, 1], which implies 

Im M In = 0 and therefore the claim follows. 

Let L ( I , )  denote the length of In. Then for each N > 0, by the claim, 

N 

E L(In)  < 1. 
n = - O  

This shows that  the series y~n~__0 L(I=) converges and therefore 

lim Ifn(x) - fn(y) l  = lira L(In)  = O. 
n --"+ o o  n - - ~  o o  

Proo[ o[ Theorem C: If  x, y E CR( f )  with x # y, then either for some 

n > O,]f '~(X), fn(y)[NP(f)  # 0, or for each n >_ O, ] f ~ ( x ) , f n ( y ) [ N P ( f )  = 0. 

So, by Lemmas 3.4 and 3.5, any set containing both  x and y is not chaotic 

under f .  
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A p p e n d i x  

The aim of this appendix is to prove Lemma 2.3. The argument is patterned on 

that given in [21]. 

Let S = {0, 1 , . . . ,  k - 1} be a set of k symbols. We call A a symbol interval 

on S, if it is a finite sequence of elements of S. Suppose A = ( a0 . . . an )  and 

B = (b0.. .  bin) are both symbol intervals on S. Define 

(A*) A B  = (ao. . .  a~bo.., b,~), 

which is also a symbol interval on S. We say A occurs in B, and write A -~ B, 

if there exists i > 0 such that  aj = bi+j for j = 0 , . . . ,  n. Similarly, one may give 

the definition of a symbol interval occurring in a point x E Y.k. 

Let K be a set of symbol intervals on S. By (A*), any finite sequence of 

elements of K is also a symbol interval on S, which will be called a K -w o rd .  

Let {Ii}i~o be a sequence of symbol intervals on S. For each i > 0, denote 

Ki = {aoIoalI1.. .  Ii-lai; aj E S, 0 < j < i}. 

It is easy to see that Ki consists of k i+l different symbol intervals on S. We call 

{Ii}i~o normal, if for each i _> 0 the following follow: 

(N1) There is at least one symbol interval occurring in Ii which contains 

successively all the k i+1 different elements of Ki. 

(N2) h a  is a Ki-word for each a �9 S. 

LEMMA A.I: Let S = { 0 , ! , . . . ,  k - 1}, k > 2. Then there is a normal sequence 

of symbol intervals on S. 

Proof: The proof will be given by induction. 

Let I0 = ( 0 1 . . .  k - 1). It is easily seen that Io satisfies (N1) and (N2). 

Suppose for m _> 1, {Io, I 1 , . . . ,  Ira-l}, satisfying (N1) and (N2), has been de- 

fined. Denote by Jm any symbol interval containing successively all the different 

symbol intervals in the set 

K m =  {aoIo.. .  a,~_lIm-lam; 

Put  

a ~ e S ,  0 < i < m } .  

I,~ = JmOIoOI1. . . OIm-1. 

It is not difficult to check that {Io, I 1 . . . , I m }  satisfies (N1) and (N2). 

induction, the lemma holds. 

By 
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LEMMA A.2: Let { i}i=o be a normal sequence of symbol intervals, K{ = 

{ a o l o . . . a i - l l i - l a i ;  aj E S, 0 <<_ j <_ i}, Vi >_ O. For each j _ 0, i f i  > j 

and A c Ki, then A is a Kj-word. 

Proof'. For given j > 0, we use induction on i. 

If i -- j ,  then the conclusion clearly holds. Next suppose the conclusion holds 

for i _< g and we prove that  it also holds for i --- l + 1. By the definition, there 

exist a o , . . . ,  at+l  E S, such that  

A = aoIo.. ,  a~hae+l. 

Set B = aolo. . .  Ie_la~. Then B E Ke. By (N2), I~al+l is a K~-word, hence A 

is also. By the inductive assumption, each element of K~ is a Kj-word and so A 

is a Kj-word. This proves that  the conclusion holds for i = g + 1. We are done. 

LEMMA A.3: For k >_ 2, there exists in ~k an uncountable set E so that i f  

x = (XOXl. �9 .), y = (yoYl. . . )  are different points in E, then xn r Yn for infinitely 

many n 's. 

Proof: For any x = (XOXl.. .) ,y = (yoyl - . . )  E ~k, x is said to be equivalent to 

y, write x ,~ y, if xn r y,~ holds only for finitely many n's. It  is easy to check 

that  ,,~ is an equivalence relation on ~k- Denote by Ek/~ the quotient space. 

We see that  for each x E Zk, the set {y E ~k; Y "  x} is countable. So ~k /~  

is uncountable. Let E be an uncountable set formed by taking a representative 

from each equivalence class of ~a/~ .  Then E satisfies the requirements of the 

lemma. 

LEMMA A.4: Let x = (X0Xl.. .)  E ~k, k _> 2. I f  for any j _> 0, there is an 

N > 0 such that (Xo.. .  x j )  occurs in (xiX~+l.. .  x~+N) for each i = O, 1, 2 , . . . ,  

then x E A(a). 

The proof, being simple, is omitted. 

Proof of Lemma 2.3: We restrict attention to the case k = 2. Put  S = {0,1}. 

For any symbol interval A on S, we denote by L(A) the length of A, that  is, the 

number of all the O's and l ' s  in A. 

Let {Ii}i~176 0 be, as constructed in Lemma A.1, a normal sequence of symbol 

intervals on S. By Lemma A.3, we may choose an uncountable set E of E2 such 

that  if x = (XoXl. . .) ,  y = (Y0Yl...) E E are different points, then xn # y,~ for 
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infinitely many n's. Define ~: E ~ E2 by ~(x )  = Xo loXl I1 . . .  (to simplify the 

notation we write x o l o x l I 1 . . ,  rather than ( xo loX l I1 . . . ) ) ,  Vx = (X0Xl . . . )  E E. 

Put  D = ~(E) .  We now prove in succession: 

(1) D is an uncountable chaotic set of a. 

It  is easy to see that  ~ is injective. Thus, since E is uncountable, so also 

is D. For any a E D, by the definition, there exists ( a o a l . . . )  C E so that  

a = aoloalI1 . . . .  Set 

m~ = L ( a o l o . . .  a i - l I i - l a i ) .  

Clearly 

0 "mi ( a )  --~ I i a i +  1 . . . .  

Observing that  Ii does not depend on the selection of a and L(I i )  ---+ oo as i --~ oc, 

we have for any x, y E D, 

(A**) lim i n fd (a '~ (x ) ,an (y ) )  < .lim d(am' (x ) ,  am ' ( y ) )  = 0 
n - - * o o  ~ o o  

(see [1] for the metric d on E2). Again by the property of E,  for any x, y E D 

with x r y, there are infinitely many n 's  so that  xn r y,~. So we have 

lim s u p d ( a n ( x ) , a n ( y ) )  >_ 1. 
n ~ o o  

And hence (1) holds. 

(2) For each y E D, w(y, a)  is minimal and D C w(y, a).  

Let y = (YoYl . . . )  E D, where yi E S for each i _> 0. By the definition, there 

exists b = (b0bl . . . )  E E so that  

y =  ~(b) =boIoblI1 . . . .  (Yoy l . . . ) .  

Obviously, 

(YoYl . . .  Yp) -~ boIoblI1 . . .  Ip_lbp, Vp ~ O. 

For given p _> 0, by Lemma A.2, y may be viewed as an infinite sequence of 

symbol intervals of the form aoIo . . ,  apIpap+l. Set 

N = 3L(bo lo . . .  bplpbp+l). 

For given i _> 0, it is easy to see that  ( y i y i+ l . . .  Yi+N) contains a symbol interval 

of the form a o l o . . ,  aplpap+l, i.e., 

aolo . . . aplpap+ l -~ (YiYi+ l . . . Yi+ N ). 
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So, by (N1), we have 

(YoYl . . . Yp) ~ bolo . . . b p - l I v - l b  v 

-< aolo . . . aplpap+ l 

-'< ( Y i Y i + I . . .  Yi+N). 

By L e m m a  A.4, y C A ( a ) .  Again by L e m m a  2.1, w(y, a)  is a min imal  set of a .  

Next  we prove D C w(y, a) .  For any z E D, by (A**), 

w(y ,  a )  M w(z ,  a)  ~ O. 

Since bo th  are minimal ,  w(y ,  a)  = w( z, o'). Thus  

D C U w ( z , a )  = w ( y , a ) ,  
zED 

and then  the proof  of (2) is obtained.  

Thus  if y E D, then  w(y ,  a )  is a min imal  set containing the uncountable  chaotic 

set D. 
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